转载

数据归一化处理

为什么要对数据进行归一化?

    归一化后加快了梯度下降求最优解的速度;2)归一化有可能提高精度。下面我简单扩展解释下这两点。

1 归一化为什么能提高梯度下降法求解最优解的速度?

      斯坦福机器学习视频做了很好的解释:https://class.coursera.org/ml-003/lecture/21

      如下图所示,蓝色的圈圈图代表的是两个特征的等高线。其中左图两个特征X1和X2的区间相差非常大,X1区间是[0,2000],X2区间是[1,5],其所形成的等高线非常尖。当使用梯度下降法寻求最优解时,很有可能走“之字型”路线(垂直等高线走),从而导致需要迭代很多次才能收敛;

      而右图对两个原始特征进行了归一化,其对应的等高线显得很圆,在梯度下降进行求解时能较快的收敛。

      因此如果机器学习模型使用梯度下降法求最优解时,归一化往往非常有必要,否则很难收敛甚至不能收敛。

2 归一化有可能提高精度

     一些分类器需要计算样本之间的距离(如欧氏距离),例如KNN。如果一个特征值域范围非常大,那么距离计算就主要取决于这个特征,从而与实际情况相悖(比如这时实际情况是值域范围小的特征更重要)。

3 归一化的类型

1)线性归一化

x' = \frac{x - \text{min}(x)}{\text{max}(x)-\text{min}(x)}

      这种归一化方法比较适用在数值比较集中的情况。这种方法有个缺陷,如果max和min不稳定,很容易使得归一化结果不稳定,使得后续使用效果也不稳定。实际使用中可以用经验常量值来替代max和min。

2)标准差标准化

  经过处理的数据符合标准正态分布,即均值为0,标准差为1,其转化函数为:

  其中μ为所有样本数据的均值,σ为所有样本数据的标准差。


3)非线性归一化

     经常用在数据分化比较大的场景,有些数值很大,有些很小。通过一些数学函数,将原始值进行映射。该方法包括 log、指数,正切等。需要根据数据分布的情况,决定非线性函数的曲线,比如log(V, 2)还是log(V, 10)等。

0 个人打赏
文章最后发布于: 2016-08-07 21:16:10
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 酷酷鲨 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览