原创

留存分析为何要做, 如何做

版权声明:本文为博主原创文章,遵循 CC 4.0 BY 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://lidong.blog.csdn.net/article/details/88605040

导读

留存,是指用户在 App、网站等应用上使用过,并一段时间后仍有使用。留存分析模型是一种衡量用户健康度/参与度的方法,超越下载量、DAU 等这样的虚荣指标,深入了解用户的留存和流失状况,发现影响产品可持续增长的关键因素,指导市场决策、产品改进、提升用户价值等等。

留存分析能解决哪些问题?

1、上个月做了一次产品迭代,如何评估其效果?是否完成了产品经理期望完成的行为?

2、作为一个社交App,在注册后不添加好友和添加 10 个好友的用户后续留存有差异吗?

3、短期留存低,长期留存一定很差吗?

4、两个推广渠道带来不同的用户,哪个渠道的用户更有可能是的高价值用户?

5、近 30 天注册的用户,半个月都没有回访的用户比例是多少?

为什么用户留存这么重要?

这就好比非常经典的“注水放水”数学题。我们每天都会面对新增用户,也会面对流失用户,池子里剩下的水就是活跃用户;而留存分析就是分析多少用户进来了,多少用户流失了,具体情况是什么,对整个产品的影响究竟有哪些影响......

图片作者:Alejandro Rigatuso

如果不做好留存,用户进一个走一个,产品就永远不能做增长。以图中为例,假设每月新增1000个用户,且没有任何人流失,那四个月之后,大概会有24000个用户,但在实际情况中,这种假设是不成立的。有人进就有人出,所以假设每个月新增1000个用户,留存率做到90%(这其实是一个非常高的值),两年后,每个月大概会持续9000个用户。这时会发生什么呢?假设每月新增的1000个人是固定的,留存率是90%,24个月之后,该产品用户总数将不会再发生大的变化。因此做好留存分析至关重要。

如何构建常见的三类留存?

首先我们需要了解,留存是基于某个用户群体的初始行为时间来计算的,描述发生了某个行为的同期群,在一段时间后是否发生了期望的行为。

初始行为和回访行为均可以是任意事件或者某个具体的事件。

通常用的三类留存可以这样来构建,以移动端应用为例,我们可以通过易观方舟来分析新增用户、活跃用户留存以及自定义留存率。

1、了解新增用户留存

可选择【初始行为 = 首次启动,回访行为 = 任意事件】,即可分析用户在首次使用应用后的留存情况。

2、了解活跃用户留存

可选择条件【初始行为 = 任意事件,回访行为 = 任意事件】,即可分析活跃的用户后续使用应用的情况。

3、自定义留存

相较分析新增/活跃用户的总体留存情况,我们更关注核心事件用户留存情况:

例如,对于电商的运营,比较关注的一个指标是复购率,我们可以定义【 初始行为 = 支付订单,回访行为 = 支付订单】 来了解用户的复购行为,用户多长时间会产生复购,我们点到任意数据节点,可以看到详细说明,比如此处代表的是2019年2月4日支付订单的用户是1729人,在第3日,即2月7日,这些用户中又有32人支付订单;

我们在此节点查看分群概览或保存用户分群,进一步分析这些忠实用户的行为特征;

如果想了解某类商品的复购率情况,可以在事件行为上增加条件。比如想了解家电类商品的复购率,同时在初始行为和后续行为上添加条件,选择商品分类包含家电,可以查看家电类产品的复购情况。

开放且免费的支持私有化部署的易观方舟Argo欢迎体验!


0 个人打赏
文章最后发布于: 2019-03-16 20:51:53
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 酷酷鲨 设计师: CSDN官方博客

打赏

开源调度DolphinScheduler

“你的鼓励将是我创作的最大动力”

5C币 10C币 20C币 50C币 100C币 200C币

分享到微信朋友圈

×

扫一扫,手机浏览